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ABSTRACT

First-shot (FS) unsupervised anomalous sound detection
(ASD) is a brand-new task introduced in DCASE 2023 Chal-
lenge Task 2, where the anomalous sounds for the target ma-
chine types are unseen in training. Existing methods often
rely on the availability of normal and abnormal sound data
from the target machines. However, due to the lack of anoma-
lous sound data for the target machine types, it becomes chal-
lenging when adapting the existing ASD methods to the first-
shot task. In this paper, we propose a new framework for the
first-shot unsupervised ASD, where metadata-assisted audio
generation is used to estimate unknown anomalies, by util-
ising the available machine information (i.e., metadata and
sound data) to fine-tune a text-to-audio generation model for
generating the anomalous sounds that contain unique acous-
tic characteristics accounting for each different machine type.
We then use the method of Time-Weighted Frequency domain
audio Representation with Gaussian Mixture Model (TWFR-
GMM) as the backbone to achieve the first-shot unsupervised
ASD. Our proposed FS-TWFR-GMM method achieves com-
petitive performance amongst top systems in DCASE 2023
Challenge Task 2, while requiring only 1% model parameters
for detection, as validated in our experiments.

Index Terms— Unsupervised learning, anomalous sound
detection, audio generation, metadata, latent diffusion model

1. INTRODUCTION

Anomalous sound detection (ASD) aims to distinguish be-
tween the normal and anomalous operating states of a ma-
chine based on the sounds emitted from it [1–5]. However,
due to the infrequent occurrence and potential diversity of
anomalous sound, it is challenging and time-consuming to
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gather sufficient training data for anomalous sound covering
various situations. To mitigate this issue, unsupervised ASD,
utilising only normal sounds during training, becomes a de-
sirable, albeit challenging, option.

First-shot (FS) unsupervised ASD has been introduced
for the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2023 Challenge Task 2 [2, 6], aiming to de-
tect target machine types’ anomalous sounds that are unseen
in training. There are three sets of information used for train-
ing: (1) anomalous and normal sounds from the reference
machine types, (2) normal sounds from the target machine
types, (3) metadata, including machine type and attributes on
operational and environmental conditions, as the label of each
of the above sounds. These target machine types (e.g., Vac-
uum, ToyTank, ToyNscale, ToyDrone, Bandsaw, Grinder, and
Shaker) are entirely distinct from the reference machine types
(e.g., Fan, Gearbox, Bearing, Slider, ToyCar, ToyTrain, and
Valve). State-of-the-art ASD methods often rely on the avail-
ability of normal and abnormal data from the target machines.
However, in practice, anomalous sound data for the target ma-
chine types may be difficult to capture due to their rare occur-
rence in practice. This makes it difficult to adapt these exist-
ing ASD methods to the first-shot task, as discussed by the
DCASE 2023 Challenge Task 2 organisers [2, 7].

To address this challenge, we present a new framework for
the first-shot unsupervised ASD with unknown anomalies es-
timated by metadata-assisted audio generation. Specifically,
we use a text-to-audio (TTA) generation model for synthesiz-
ing anomalous and normal sounds for the target machine type.
We use the state-of-the-art TTA model, i.e. AudioLDM [8],
but fine-tuned using all the available data in the first-shot sce-
nario, including the anomalous and normal sounds from the
reference machine types, normal sounds from the target ma-
chine types, and their corresponding metadata describing the
operational and environmental conditions of these machines.
The proposed approach is built on the ASD model in our pre-
vious study [5], which is a Time-Weighted Frequency domain
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Fig. 1. The proposed first-shot unsupervised ASD method us-
ing TWFR-GMM as the backbone. For target machine sound
synthesis (steps 1-2), we use normal and anomalous sounds
from reference machine type(s) and normal sounds from the
target machine type(s), along with corresponding metadata
detailing machine operating and monitoring conditions. For
first-shot anomaly detection (step 3-4), we identify the unseen
anomalous sounds from the target machine type(s).

audio Representation (TWFR) with Gaussian Mixture Model
(GMM). For this reason, we abbreviate the proposed first-shot
approach as FS-TWFR-GMM. In this model, we use a hyper-
parameter r to highlight the important information of the au-
dio representation in the time domain that may differ between
machine types. It is determined for the target machine type by
fine-tuning using synthesised normal and anomalous sounds
rather than using real normal and anomalous sounds as in [5].

Our method is the first to estimate unknown anomalies in
unsupervised ASD using machine information for audio gen-
eration. Existing anomaly synthesis methods (e.g., [9–12])
only use normal sound data, but not abnormal sounds of the
reference machines or metadata. In contrast, our method ex-
ploits all available audio data and metadata, giving improved
quality in the synthesised machine sounds, which captures
the features of actual sounds from the corresponding machine
type. Furthermore, our approach is versatile in accommodat-
ing a wide range of machine metadata, regardless of type and
format, thus alleviating challenges posed by diverse machine
attributes and label formats frequently encountered in real-
world scenarios.

Experiments show that the proposed method provides
competitive performance for the first-shot unsupervised ASD.
The preliminary version [13] forms the core of the system
ranked the 7th in DCASE 2023 Challenge Task 2. Our im-
proved version in this paper is now between 3rd and 4th place,
with only 1.34% in the AUC metric and 2.27% in the pAUC
metric lower than the top method. Notably, our approach
requires vastly reduced resources due to a non-deep-learning

design, i.e., only 1.1% of the number of parameters as used
in the top method in DCASE 2023 Challenge. Thus, the
proposed method is promising for practical applications with
computing resource constraints.

2. PROPOSED METHOD

Fig. 1 outlines the proposed FS-TWFR-GMM method. First,
we synthesize the sounds of target machine types with a
fine-tuned text-to-audio generation model, utilising normal
and anomalous sounds and their metadata from the reference
machine types and normal sound data from the target ma-
chine type, as detailed in Section 2.1. Then, the ASD model
tuned for each target machine type with the synthetic ma-
chine sounds is used to detect the unseen anomalous sounds,
as detailed in Section 2.2. Note that the backbone ASD model
TWFR-GMM can be replaced with other ASD models, such
as [3, 12, 14].

2.1. Metadata-Assisted Machine Sound Synthesis

2.1.1. Metadata based Machine Sound Captioning

In the training dataset for ASD, the label of machine sounds
contains related metadata, e.g., machine operating status. In
our method, we generate captions based on the metadata, for
example, using captions to describe the machine’s operating
status. We then use captions as textual prompt, and generate
synthetic sound using a TTA model. First, we convert the
metadata to captions as

c = Fc(l) (1)

where Fc(·) denotes the captioning function. It converts the
label l of a machine sound to caption c, with a predefined
descriptive text template for each different machine type, with
examples illustrated in Table 1.

2.1.2. Fine-tuning AudioLDM for Machine Sound Synthesis

We use the AudioLDM algorithm to synthesise machine
sounds related to a specific target machine type in terms of
the captions generated in Section 2.1.1. The AudioLDM
algorithm uses the contrastive language-audio pretraining
(CLAP) [15] to build a shared latent space between text
embeddings of the captions and audio embeddings of the
sounds, and uses the latent diffusion model (LDM) [8] on a
continuous audio representation for text-to-audio generation,
conditioned on the caption. To tailor this model for our task,
we fine-tune a pre-trained AudioLDM [8], using the machine
sound and caption pairs, as follows,

G←P (A|C) (2)

where P denotes the pre-trained AudioLDM model, and G is
the AudioLDM model fine-tuned by a set of machine audios
A, with the corresponding set of captions C as the condition.



Table 1. Examples of available metadata within the descriptive text captions for machine sounds from audio labels, including
the normal and anomalous sound of the reference machine type, i.e., ToyCar, and the normal sound of the target machine type,
i.e., Grinder.

Machine type Example of the label (metadata) Caption for text-to-audio generation
ToyCar section 00 source test normal 0001 car B2 spd 31V mic 1.wav This is the normal sound of a toy car with model B2 and speed 31V, recorded by a microphone placed at the position 1.
ToyCar section 00 source test anomaly 0001 car B2 spd 31V mic 1.wav This is the anomaly sound of a toy car with model B2 and speed 31V, recorded by a microphone placed at the position 1.
Grinder section 00 source train normal 0000 grindstone 2 plate 2.wav This is the normal sound of a grinding machine with grindstones 2 and metal plates 2.

{
A = {ARN,ARA,ATN}
C = {CRN,CRA,CTN}

(3)

where ARN, ARA and ATN respectively represent the sets of
audio signals for the reference machine type’s normal sounds,
the reference machine type’s anomalous sounds, and the tar-
get machine type’s normal sounds, with corresponding sets of
captions CRN, CRA, and CTN.

To synthesise sounds for the target machine types, we use
the corresponding captions as the condition and gradually de-
noise from the fine-tuned LDM distribution to estimate the
true data distribution and generate audio, that{

ÃTN = G(CTN)

ÃTA = G(CTA)
(4)

where ÃTN and ÃTA denote the sets of synthetic audios for
target machine types’ normal sounds and anomalous sounds,
respectively.

In first-shot unsupervised ASD, the audios and captions
for target machine types’ anomalous sounds do not exist in
the training stage. Therefore, we obtain the captions set CTA
for target machine types’ anomalous sound generation by re-
placing the word “normal” in CTN with “anomaly”.

2.2. First-Shot Unsupervised ASD Using Synthesised
Sounds

With the synthetic normal and anomaly sounds account-
ing for characteristics of specific target machine types, we
can train the ASD model for the first-shot scenario by opti-
mising audio feature representations to distinguish between
normal and abnormal sounds effectively. In this paper, we
adapt TWFR-GMM for the first-shot scenario, resulting in
FS-TWFR-GMM.

The TWFR-GMM algorithm [5] obtains the time-weighted
frequency domain audio representation (TWFR) R(X) ∈
RM , by incorporating a hyperparameter r for each machine
type, as follows

R(X) = Ranking(X) ·
[

r0

z(r)
,
r1

z(r)
, ...,

rN−1

z(r)

]⊤
(5)

where X ∈ RM×N is the log-mel spectrogram of an audio
signal with M mel-bins and N time frames. Ranking(·) de-
notes the operation of re-arranging X in descending order for
the energy values over time frames for time weight calcula-
tion, following [5]. Here, r determines the weight assigned to

each time frame, and z(r) =
∑N

n=1r
n−1 is for weight nor-

malisation. ⊤ denotes the transposition operation.
The audio representation R(·) is trained using normal

sounds, but fine-tuned with anomalous sounds for each ma-
chine type’s dynamic and unique sound characteristics, which
is then used for audio feature extraction in the detection stage
with GMM to achieve anomaly detection in [5]. However,
it is not applicable in the first-shot scenarios, as there are no
abnormal sounds existing for the target machine types.

In this paper, to adapt TWFR-GMM for the first-shot sce-
nario, the hyperparameter r is estimated by optimising the
following cost with the synthesised machine sounds,

r̃ = argmax
r

{
E(r, ÃTA, ÃTN)

}
(6)

where r̃ denotes the estimated value of r, and E(·) is evalua-
tion metric for ASD following [5]. We set the selection range
r ∈ [0, 1.10], and the selection interval is 0.01. When r ex-
ceeds one, it gives greater weights to the time frames with
lower energy, whereas when r is less than one, it gives higher
weights to time frames with higher energy. This approach
considers the diverse audio patterns observed among differ-
ent types of machines. For instance, some machines produce
loud anomalous sounds, while others exhibit short-term stalls
caused by extraneous object interference, as discussed in [16].

The synthesised normal and anomalous sounds (ÃTN
and ÃTA) are employed to optimise the hyperparameter r in
TWFR. In contrast, the GMM uses real normal sounds of
the target machine type (aTN). This approach helps minimise
the potential bias introduced by the sounds generated by Au-
dioLDM. Other detailed implementations of TWFR can be
found in [5].

3. EXPERIMENTS

3.1. Experimental Setup

Dataset: We use the DCASE 2023 Challenge Task 2 dataset
[2], including seven reference machine types (Fan, Gearbox,
Bearing, Slider, ToyCar, ToyTrain, Valve) and seven target
machine types (Vacuum, ToyTank, ToyNscale, ToyDrone,
Bandsaw, Grinder, Shaker). In the training set, for each ref-
erence machine type, there are 1100 normal sound clips and
100 abnormal sound clips, while for each target machine
type, there are 1000 normal sound clips. In the evaluation set,
there are 200 sound clips with unknown conditions (normal
or abnormal) for each target machine type.



Table 2. Performance comparison with DCASE 2023 Challenge Task 2 top submissions.

Method Ranking ToyDrone ToyNscale ToyTank Vacuum Bandsaw Grinder Shaker Average

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

Jie IESEFPT [17] 1 58.03 51.58 89.03 77.74 60.33 61.53 96.18 85.32 65.66 53.35 66.63 62.45 68.08 55.97 69.75 62.03
Lv HUAKONG [18] 2 54.84 49.37 82.71 57.00 74.80 63.79 93.66 87.42 58.48 50.30 66.69 61.22 74.24 65.24 70.05 60.11
Jiang THUEE [19] 3 55.83 49.74 73.44 61.63 63.03 59.74 81.98 76.42 71.10 56.64 62.18 62.41 75.99 64.68 68.03 60.71

FS-TWFR-GMM (Proposed) − 56.28 50.89 64.33 54.16 62.60 57.47 82.75 75.84 78.31 61.62 61.75 54.98 83.39 71.32 68.41 59.76
Wilkinghoff FKIE [9] 4 53.90 50.21 87.14 76.58 63.43 62.21 83.26 74.00 66.06 52.87 67.10 62.11 65.91 50.24 67.95 59.58

Guan HEU [13] 7 62.93 52.05 68.94 54.21 66.41 60.63 79.47 72.47 57.22 50.76 62.38 54.96 78.46 61.47 67.12 57.32

DCASE2023 Baseline [6] 9 58.93 51.42 50.73 50.89 57.89 53.84 86.84 65.32 69.10 57.54 60.19 59.55 72.28 62.33 63.41 56.82

Table 3. Comparison of the number of parameters.
Method Ranking Training (one-off cost) Detection

Jie IESEFPT [17] 1 3M 3M
Lv HUAKONG [18] 2 300M 300M
Jiang THUEE [19] 3 6M 6M

FS-TWFR-GMM (Proposed) − 33K+792M (AudioLDM) 33K
Wilkinghoff FKIE [9] 4 34M 34M

Guan HEU [13] 7 33K+792M (AudioLDM) 33K

DCASE2023 Baseline [6] 9 267K 267K

Table 4. Comparison of single systems, namely FS-TWFR-
GMM and its initial version (System 2 of the ensemble system
[13]). With or without extended r range refers to selecting r
from [0, 1.1] or [0, 1]. With or without RS refers to removing
or keeping the silence part in the synthetic machine sounds.

Method Extended r range RS AUC pAUC

System 2 of Guan HEU [13] ✗ ✗ 65.07 57.69

FS-TWFR-GMM
✓ ✗ 65.22 57.72
✗ ✓ 67.90 59.19
✓ ✓ 68.41 59.76

Table 5. Comparison of using hyperparameter r from no
training data, generated, or real machine sound data.

Methods Training data AUC pAUC Average

r = 0 None 56.44 54.04 55.24
r = 1 None 66.78 60.28 63.53

FS-TWFR-GMM Synthetic 68.41 59.76 64.08

TWFR-GMM Real 71.55 61.62 66.59

Table 6. Selected r from synthetic or real machine sounds.
Training data ToyDrone ToyNscale ToyTank Vacuum Bandsaw Grinder Shaker

Synthetic 1.02 1.00 0.99 0.84 1.03 0.96 1.01
Real 1.01 1.00 0.87 0.94 1.02 0.99 1.02

Difference 0.01 0.00 0.12 0.10 0.01 0.03 0.01

Evaluation metrics: The area under the receiver operating
characteristic curve (AUC) and the partial-AUC (pAUC) are
commonly used for performance evaluation [1, 4, 20, 21],
where pAUC represents the AUC over a low false-positive-
rate range [0, 0.1] [1]. A larger value indicates better anoma-
lous sound detection performance.

3.2. Results

Tables 2 and 3 show that the proposed FS-TWFR-GMM has
a significant advantage in the number of parameters (33k) re-

quired for the detection stage and achieves competitive per-
formance ranking between the 3rd and 4th places amongst
top systems in the DCASE 2023 Challenge Task 2 on first-
shot unsupervised ASD, with only 1.34% in AUC and 2.27%
in pAUC lower than the 1st placed method.

The initial version of FS-TWFR-GMM, i.e., System 2 of
the ensemble system [13] achieved the 7th place in DCASE
2023 Challenge Task 2. In comparison, the FS-TWFR-GMM
version proposed in this paper optimises r over an extended
range [0, 1.1], and is shown to be more effective, as shown in
Table 4.

Table 5 shows that the proposed method fine-tuned from
synthetic data is generally better than blindly setting the hy-
perparameter (r = 0 for max pooling, or r = 1 for aver-
age pooling), which represents the straightforward approach
due to the unavailability of anomaly data in first-shot ASD.
Furthermore, the performance of the proposed unsupervised
method is only 3.14% in AUC and 1.94% in pAUC lower than
the performance achieved by the fully supervised approach
employing real abnormal and normal data directly from the
evaluation set to optimise r in TWFR-GMM.

Table 6 shows r selected in terms of the synthetic sounds
or real anomalous sounds in the evaluation set with nearly
no difference. Moreover, it is adapted to the unique sound
patterns of each machine type, through prioritising lower or
higher energy time frames or treating all time frames equally
(r > 1, r < 1, or r = 1).

4. CONCLUSION

We have presented a new framework for the first-shot un-
supervised anomalous sound detection using a text-to-audio
generation model to synthesise normal and abnormal machine
sounds while leveraging all available training data. With our
approach, unseen anomalies in new machine types can be
estimated. As a result, it becomes easier to distinguish be-
tween normal and unknown anomaly sounds. The first-shot
unsupervised method FS-TWFR-GMM implements the pro-
posed framework on the time-weighted frequency domain au-
dio representation with the Gaussian mixture model. It per-
forms similarly to the state-of-the-art first-shot unsupervised
ASD methods. Furthermore, the proposed framework can be
used with other ASD systems for the first-shot scenarios.
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